Scipion: Towards en electron microscopy integration

Adrián Quintana1,3, Javier Vargas3, Antonio Poza Ballesteros3, José Ramón Macías3, Roberto Marabini2, Carlos Oscar Sanchez Sorzano3 and José María Carazo1,3

1 GN7 of the National Institute for Bioinformatics (INB) and Biocomputing Unit of the National Centre for Biotechnology (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid
2 Computer Science Department, Univ. Autonoma de Madrid, Madrid, Spain
3 Instruct Image Processing Center (I2PC), Biocomputing Unit, National Center of Biotechnology (CNB-CSIC), Madrid, Spain

Structural biology aims at the visualization of microscopic biological structures with the ultimate goal of understanding the molecular mechanisms. Current software suites for the analysis of this kind of images are actually composed by hundreds of small programs, each one performing an “atomic” task. Several attempts have already been done towards data, packages and workflow integration. EMDDataBank is probably the most successful project on data integration while IPLT [1], SPARX [2] and, lastly, Appion [3] are some important precedents regarding workflow integration. Scipion is designed as a decentralized and decoupled application mainly developed in Java connected to an ontological database. Users can access Scipion from a desktop application connected to a web services platform. Scipion WS platform can be defined as the Scipion brain as it is in charge of the main tasks. Finally, Activiti workflow engine will invoke sequentially the 3DEM algorithms through some Python wrappers.

Why?

- Standardization and Normalization
- Workflow Based
- Package Interoperability and File Independence
- Graphical Interface
- Reproducibility
- Traceability

References:

[1] Philippson et al. J. Structural Biology, 157 (2007) 28-37
[2] Hohn et al. J. Structural Biology, 157 (2007) 47-55
[3] Lander et al. J. Structural Biology, 166 (2009) 95-102