Hidden Markov Models applied to Speech recognition: Basic algorithms Discrete, Continuous & Semicontinuous HMMs

Ricardo de Córdoba Herralde
Grupo de Tecnología del Habla
Departamento de Ingeniería Electrónica. UPM
Speech Recognition Architecture

- **Databases:**
 - Training
 - Test
 - Validation

 MUST BE different
 (size and “cheating” problems)
Hidden Markov Models (HMMs).

Introduction (I)

• Problem:
 – A process generates an observable sequence of symbols (vectors, heads or tails, ball colors in an urn, etc.)
 – How a model that explains this sequence is built?
 – Using that model a system for generation, recognition, identification, etc., can be designed

• Model types:
 – Deterministic: exploit known characteristics of the signal
 – **Statistical**: try to characterize the statistical properties of the signal
Hidden Markov Models (HMMs). Introduction (II)

• Statistical models:
 – Gaussian, Poisson, Markov, Hidden Markov Models, etc.
 • Assumed that the signal is correctly characterized by a random process
• Example previous to the HMM definition:
 – Urns and colored balls, a subject is hidden
 – The subject selects an urn according to a random process (hidden process)
 – Selects a ball and finally shows it according to a random process (visible process)
Hidden Markov Models (HMMs). Introduction (III)

• Objective: given the model and the observation sequence \(O \)
 – How can the underlying state sequence \(Q \) be determined?

Observation Sequence: \(O = \{B, W, B, W, W, B\} \)
State Sequence: \(Q = \{1, 1, 2, 1, 2, 1\} \)
Hidden Markov Models (HMMs). Introduction (IV)

- Definition
 - Double stochastic process:
 - Hidden stochastic process, unseen
 - Visible stochastic process, generates the observation sequence
- Parametric model able to describe acoustic events in an efficient way
- We assume that the transition depends only on the previous state and the observation only on the current state (first order)
Hidden Markov Models (HMMs). Discrete HMMs

• Elements of a discrete HMM
 – N states $S = \{S_1, S_2, \ldots, S_N\}$ in t, q_t **TOPOLOGY**
 – M observation symbols $V = \{v_1, v_2, \ldots, v_M\}$ in t, O_t
 – State transition probability distribution

 \[A = \{ a_{ij} = p(q_{t+1}=S_j|q_t=S_i) \} \]
 – Observation symbol probability distribution in state j

 \[B = \{ b_i(k) = p(O_t=v_k|q_t=S_i) \} \]
 – Initial state distribution

 \[\Pi = \{ \pi_i = p(q_1=S_i) \} \]

• Notationally, an HMM is typically written as:
 \[
 \lambda = \{ A, B, \Pi \}
 \]

• \approx Probabilistic finite automata
Hidden Markov Models (HMMs).

Example

\[\lambda = \{ A, B, \Pi \} \]

\[
\begin{bmatrix}
0.6 & 0.4 \\
0.3 & 0.7 \\
0.4 & 0.3 & 0.2 & 0.2 & 0.6 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.7 & 0.2 & 0.1 & 0.3 & 0.1 & 0.2 & 0.7 & 0.6 & 0.1 & 0.2 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.3 & 0.2 & 0.2 & 0.6 & 0.4 \\
0.3 & 0.7 & 0.2 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
\end{bmatrix}
\]

\[\Pi = [0.4 \ 0.4 \ 0.2] \]

\[A = \begin{bmatrix}
0.4 & 0.3 & 0.3 \\
0.1 & 0.1 & 0.8 \\
0.2 & 0.6 & 0.2 \\
0.7 & 0.2 & 0.1 \\
0.3 & 0.6 & 0.1 \\
0.1 & 0.2 & 0.7 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
\end{bmatrix} \]

\[B = \begin{bmatrix}
0.4 & 0.3 & 0.3 \\
0.1 & 0.1 & 0.8 \\
0.2 & 0.6 & 0.2 \\
0.7 & 0.2 & 0.1 \\
0.3 & 0.6 & 0.1 \\
0.1 & 0.2 & 0.7 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
0.4 & 0.1 & 0.3 & 0.3 & 0.1 & 0.1 & 0.6 & 0.6 & 0.2 & 0.4 \\
0.2 & 0.2 & 0.1 & 0.8 \\
\end{bmatrix} \]

\[V = \begin{bmatrix}
\text{rain} \\
\text{clouds} \\
\text{sun} \\
\end{bmatrix} \]

\[S = \begin{bmatrix}
\text{Rainy} \\
\text{Cloudy} \\
\text{Sunny} \\
\end{bmatrix} \]
Hidden Markov Models (HMMs).

Generation of HMM Observations

1. Choose an initial state, \(q_1 = s_i \), based on the initial state distribution, \(\pi \).
2. For \(t = 1 \) to \(T \):
 - Choose \(o_t = v_k \) according to the symbol probability distribution in state \(s_i \), \(b_i(k) \).
 - Transition to a new state \(q_{t+1} = s_j \) according to the state transition probability distribution for state \(s_i \), \(a_{ij} \).
3. Increment \(t \) by 1, return to step 2 if \(t \leq T \); else, terminate.
Hidden Markov Models (HMMs). Typical topology for speech
Hidden Markov Models (HMMs).
Problems to be solved (I)

- Three basic problems:
 - **Evaluation**:
 - Given the observation sequence $O=\{O_1, O_2, \ldots, O_T\}$ and the model λ
 - How do we compute $p(O | \lambda) = \text{the probability of sequence } O$ being generated by the model
 - To know which model better represents O ⇒ recognition
 - **Segmentation**:
 - Given the observation sequence $O=\{O_1, O_2, \ldots, O_T\}$ and model λ
 - How do we choose a state sequence $Q=\{q_1, q_2, \ldots, q_T\}$ which is optimum in some sense?
Hidden Markov Models (HMMs). Problems to be solved (II)

- **Training or estimation**:
 - Given the observation sequence $O=\{O_1, O_2, \ldots, O_T\}$
 - How do we adjust the model parameters λ to maximize $p(O | \lambda)$?
 - Objective: optimize λ parameters to better describe the sequence
 - Application to isolated speech recognition: training + evaluation
Hidden Markov Models (HMMs). Evaluation (I)

• Evaluation using raw force
 – Given the observation sequence $O=\{O_1, O_2, \ldots, O_T\}$ and the model λ: ¿$p(O \mid \lambda)$?
 – Compute all possible sequences $Q = \{q_1, q_2, \ldots, q_T\}$:
 \[
 p(O \mid Q, \lambda) = \prod_{t=1}^{T} p(O_t \mid q_t, \lambda) = b_{q_1}(O_1)b_{q_2}(O_2)\ldots b_{q_T}(O_T)
 \]
 \[
 p(Q \mid \lambda) = \pi_{q_1} a_{q_1q_2} a_{q_2q_3} \ldots a_{q_{T-1}q_T}
 \]
 \[
 p(O, Q \mid \lambda) = p(O \mid Q, \lambda) p(Q \mid \lambda)
 \]
 \[
 p(O \mid \lambda) = \sum_{Q} p(O, Q \mid \lambda) = \sum_{Q} p(O \mid Q, \lambda) p(Q \mid \lambda)
 \]
 – Very costly: $O(N^T)$
 – Underflow problems
Hidden Markov Models (HMMs).
Evaluation (II)

- Forward $O(N^2T)$
 - The forward variable is defined as:
 - The probability of the partial observation sequence up to time t and state s_i at time t, given the model λ.
 - Initialization
 $$\alpha_1(i) = \pi_i b_i(O_1); \quad 1 \leq i \leq N$$
 - Recursion
 $$\alpha_t(j) = \left[\sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij} \right] b_j(O_t); \quad 1 \leq t \leq T, 1 \leq j \leq N$$
 - Finalization
 $$p(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$
 - Computing cost: $O(N^2T)$, instead of $O(N^T)$
Hidden Markov Models (HMMs).

Evaluation (III)

- Forward
Hidden Markov Models (HMMs). Evaluation (IV)

- Forward:
 - $\alpha_{t-1}(i) a_{ij}$ = joint probability of being in state i in time $t-1$ and making a transition to state j
 - The Σ for all previous states in $t-1$ = prob of being in state j in time t with the sequence until O_{t-1} being generated
 - With the final multiplication by $b_j(O_t)$ (prob of generating observation O_t in state j), we obtain $\alpha_t(j)$.

$$\alpha_i(j) = \left[\sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} \right] b_j(O_t); \quad 1 \leq t \leq T$$
$$1 \leq j \leq N$$
Hidden Markov Models (HMMs). Evaluation (V)

- Backward $O(N^2 T)$
 \[\beta_t(i) = p(O_{t+1}O_{t+2} \ldots O_T, q_t = S_i | \lambda) \]
 - The backward variable is defined as:
 - The probability of the partial observation sequence from time $t+1$ up to T, and state s_i at time t, given the model λ.
 - Initialization
 \[\beta_T(i) = 1; \quad 1 \leq i \leq N \]
 - Recursion
 \[\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(O_{t+1}) \beta_{t+1}(j); \quad 1 \leq t \leq T - 1 \]
 \[1 \leq i \leq N \]
 - Finalization
 \[p(O|\lambda) = \sum_{i=1}^{N} \pi_i b_i(O_1) \beta_1(i) \]
Hidden Markov Models (HMMs). Evaluation (VI)

• Backward
Hidden Markov Models (HMMs). Segmentation (I)

– Given the observation sequence $O=\{O_1, O_2, ..., O_T\}$ and model λ

 • How do we choose a state sequence $Q=\{q_1, q_2, ..., q_T\}$ which is optimum in some sense?

 • Example: choose the most probable state sequence

– Viterbi algorithm

 • Based in dynamic programming (optimization of sequential decision processes). Optimality principle.

 • Similar to forward (maximization instead of addition)

 • To retrieve the state sequence, we must keep track of the state sequence which gave the best path, at time t, to state s_i
Hidden Markov Models (HMMs). Segmentation (II)

• Viterbi algorithm:
 – Initialization
 \[\delta_1(i) = \pi_i b_i(O_1); \quad \psi_1(i) = 0; \quad 1 \leq i \leq N \]
 – Recursion (decision on a local optimum)
 \[\delta_t(j) = \max_{1 \leq i \leq N} \left[\delta_{t-1}(i) a_{ij} \right] b_j(O_t) \quad 2 \leq t \leq T \]
 \[\psi_t(j) = \arg\max_{1 \leq i \leq N} \left[\delta_{t-1}(i) a_{ij} \right] \quad 1 \leq j \leq N \]
 – Finalization
 \[P^* = \max_{1 \leq i \leq N} \left[\delta_T(i) \right] \]
 \[q_T^* = \arg\max_{1 \leq i \leq N} \left[\delta_T(i) \right] \]

\[\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(O_t) \]

Not used in \(t=1 \)

Backtracking
\[q_t^* = \psi_{t+1}(q_{t+1}^*), \quad t = T - 1, T - 2, \ldots, 1 \]
Hidden Markov Models (HMMs). Segmentation (III)

- Viterbi algorithm:
Hidden Markov Models (HMMs). Segmentation (IV)

- **Viterbi algorithm:**
 - The Segmentation problem is solved (the state sequence is obtained)
 - The Evaluation problem is also solved:
 - Even though the probability is not exact (as in forward-backward) because maximizations instead of additions are made
 - It can be used to compare the probabilities obtained for different models,
 - Which is the basic task in speech recognition
 - The recognized word is the one with the highest probability