Chapter 4. Systems of ODEs. Phase plane. Qualitative methods

C.O.S. Sorzano

Biomedical Engineering

September 13, 2014
Outline

1. Systems of ODEs. Phase plane. Qualitative methods
 - Systems of ODEs as models
 - Basic theory of systems of ODEs. Wronskian
 - Constant-coefficient systems. Phase plane method
 - Criteria for critical points. Stability
 - Qualitative methods for nonlinear systems
 - Nonhomogeneous linear systems of ODEs
References

Systems of ODEs. Phase plane. Qualitative methods

- Systems of ODEs as models
 - Basic theory of systems of ODEs. Wronskian
 - Constant-coefficient systems. Phase plane method
 - Criteria for critical points. Stability
 - Qualitative methods for nonlinear systems
 - Nonhomogeneous linear systems of ODEs
Mixing tanks

Solution:

\[y'_1 = \text{inflow-outflow} = \frac{y_2}{100} \left[\frac{lb}{gal} \right] 2 \left[\frac{gal}{min} \right] \frac{y_1}{100} \left[\frac{lb}{gal} \right] 2 \left[\frac{gal}{min} \right] \]

\[y'_2 = \text{inflow-outflow} = \frac{y_1}{100} \left[\frac{lb}{gal} \right] 2 \left[\frac{gal}{min} \right] \frac{y_2}{100} \left[\frac{lb}{gal} \right] 2 \left[\frac{gal}{min} \right] \]

\[y'_1 = -0.02y_1 + 0.02y_2 \]
\[y'_2 = 0.02y_1 - 0.02y_2 \]

\[\begin{pmatrix} y'_1 \\ y'_2 \end{pmatrix} = \begin{pmatrix} -0.02 & 0.02 \\ 0.02 & -0.02 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \Rightarrow \mathbf{y}' = \mathbf{A}\mathbf{y} \]
We try a solution of the form

\[y = xe^{\lambda t} \]

\[y' = \lambda xe^{\lambda t} \]

Now we substitute into the ODE

\[y' = Ay \]

\[\lambda xe^{\lambda t} = Ae^{\lambda t} \]

\[\lambda x = Ax \]

That is \(y = xe^{\lambda t} \) can be a solution of the ODE if \(x \) is an eigenvector of the matrix \(A \) and \(\lambda \) its associated eigenvalue.

\[A \Rightarrow \begin{cases}
\lambda_1 = 0, x_1 = (1, 1)^T \\
\lambda_2 = -0.04, x_2 = (1, -1)^T
\end{cases} \]
The general solution is
\[y = c_1 x_1 e^{\lambda_1 t} + c_2 x_2 e^{\lambda_2 t} \]

\[y = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-0.04t} \]

To determine the coefficients \(c_1 \) and \(c_2 \), we impose the initial conditions \(y_1(0) = 0, y_2(150) \)

\[c_1 \begin{pmatrix} 0 \\ 150 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \Rightarrow c_1 = 75, c_2 = -75 \]

The solution to the problem is
\[y = 75 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 75 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-0.04t} \Rightarrow \]

\[\begin{cases} y_1 = 75 - 75e^{-0.04t} \\ y_2 = 75 + 75e^{-0.04t} \end{cases} \]
Systems of ODEs as models

Mixing tanks (continued)

\[
y = 75 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 75 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-0.04t} \Rightarrow \begin{cases} y_1 = 75 - 75e^{-0.04t} \\ y_2 = 75 + 75e^{-0.04t} \end{cases}
\]
Systems of ODEs as models

Electrical network

Solution:

\[LL_1' + R_1(l_1 - l_2) = E \Rightarrow l_1' = -R_1 l_1 + R_1 l_2 + E \]

\[R_1(l_2 - l_1) + \frac{1}{C} \int l_2 \, dt + R_2 l_2 = 0 \Rightarrow -R_1 l_1' + (R_1 + R_2) l_2' = -\frac{1}{C} l_2 \]

\[L = 1 \text{ henry} \quad C = 0.25 \text{ farad} \]
\[E = 12 \text{ volts} \]
\[R_1 = 4 \text{ ohms} \]
\[R_2 = 6 \text{ ohms} \]
Systems of ODEs as models

Electrical network (continued)

\[
\begin{align*}
I'_1 &= -R_1 I_1 + R_1 I_2 + E \\
-R_1 I'_1 + (R_1 + R_2) I'_2 &= -\frac{1}{C} I_2 \\
I'_1 &= -4I_1 + 4I_2 + 12 \\
-4I'_1 + 10I'_2 &= -4I_2
\end{align*}
\]

\[
\begin{pmatrix} I'_1 \\ I'_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -4 & 10 \end{pmatrix} \begin{pmatrix} I'_1 \\ I'_2 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} + \begin{pmatrix} 12 \\ 0 \end{pmatrix}
\]

The eigenvalues and eigenvectors of the matrix \(A \) are

\[
A \Rightarrow \left\{ \begin{array}{l}
\lambda_1 = -2, \mathbf{x}_1 = (2, 1)^T \\
\lambda_2 = -0.8, \mathbf{x}_2 = (1, 0.8)^T
\end{array} \right.
\]
Electrical network (continued)

\[A \Rightarrow \left\{ \begin{array}{l} \lambda_1 = -2, \mathbf{x}_1 = (2, 1)^T \\ \lambda_2 = -0.8, \mathbf{x}_2 = (1, 0.8)^T \end{array} \right. \]

The general solution of the H problem is

\[\mathbf{I} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ 0.8 \end{pmatrix} e^{-0.8t} \]

For a particular solution of the NH problem we try a constant vector \(\mathbf{I} = \mathbf{a} \)

\[\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ -1.6 & 1.2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} 12 \\ 4.8 \end{pmatrix} \Rightarrow a_1 = 3, a_2 = 0 \]

So the general solution of the NH problem is

\[\mathbf{I} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ 0.8 \end{pmatrix} e^{-0.8t} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} \]
Electrical network (continued)

\[I = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ 0.8 \end{pmatrix} e^{-0.8t} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} \]

To determine the unknown coefficients we impose the initial condition \(I(0) = 0 \)

\[0 = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-2 \cdot 0} + c_2 \begin{pmatrix} 1 \\ 0.8 \end{pmatrix} e^{-0.8 \cdot 0} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} \Rightarrow c_1 = -4, \ c_2 = 5 \]

The solution to the problem is

\[I = -4 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-2t} + 5 \begin{pmatrix} 1 \\ 0.8 \end{pmatrix} e^{-0.8t} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} \]
Electrical network (continued)

\[L = 1 \text{ henry}, \quad C = 0.25 \text{ farad} \]

\[E = 12 \text{ volts} \]

\[I_1, I_2, I_3 \]

\[R_1 = 4 \text{ ohms}, \quad R_2 = 6 \text{ ohms} \]

\[t = 0 \]

\[I(t) \]

\[I_1(t), I_2(t) \]

\[I_1, I_2 \]

\[0, 1, 2, 3, 4, 5 \]

\[0, 0.5, 1, 1.5, 2, 3, 4, 5 \]
Conversion of an n-th order ODE to a system

Conversion of an ODE

An n-th order ODE

$$y^{(n)} = F(t, y, y', ..., y^{(n-1)})$$

can be converted to a system of n first-order ODEs by setting $y_1 = y$ and

$$y'_1 = y_2$$
$$y'_2 = y_3$$
$$...$$
$$y'_{n-1} = y_n$$
$$y'_n = F(t, y_1, y_2, ..., y_n)$$
Conversion of an n-th order ODE to a system

Example

$$my'' + cy' + ky = 0$$

Solution:

$$y'' = -\frac{c}{m}y' - \frac{k}{m}y$$

Now we write it as

$$y_1' = y_2$$

$$y_2' = -\frac{k}{m}y_1 - \frac{c}{m}y_2$$

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

Its characteristic polynomial is

$$\left| \begin{array}{cc} -\lambda & 1 \\ -\frac{k}{m} & -\frac{c}{m} - \lambda \end{array} \right| = \lambda^2 + \frac{c}{m}\lambda + \frac{k}{m} = 0$$
Conversion of an n-th order ODE to a system

Example (continued)

\[\lambda^2 + \frac{c}{m} \lambda + \frac{k}{m} = 0 \]

Let us now give values, $m = 1$, $c = 2$, $k = 0.75$

\[\lambda^2 + 2\lambda + 0.75 = 0 \Rightarrow \lambda_1 = -0.5, \lambda_2 = -1.5 \]

With eigenvectors

\[\mathbf{v}_1 = (2, -1)^T, \mathbf{v}_2 = (1, -1.5)^T \]

So, the general solution is

\[\mathbf{y} = c_1 \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^{-0.5t} + c_2 \begin{pmatrix} 1 \\ -1.5 \end{pmatrix} e^{-1.5t} \]

The first component is

\[y_1 = y = 2c_1 e^{-0.5t} + c_2 e^{-1.5t} \]

The second component is its derivative.
Exercises

From Kreyszig (10th ed.), Chapter 4, Section 1:

- 4.1.1
- 4.1.12
1 Systems of ODEs. Phase plane. Qualitative methods
 - Systems of ODEs as models
 - Basic theory of systems of ODEs. Wronskian
 - Constant-coefficient systems. Phase plane method
 - Criteria for critical points. Stability
 - Qualitative methods for nonlinear systems
 - Nonhomogeneous linear systems of ODEs
Basic theory

In general, an ODE system is of the form

\[\begin{align*}
 y'_1 & = f_1(t, y_1, ..., y_n) \\
 y'_2 & = f_2(t, y_1, ..., y_n) \\
 & \quad \Rightarrow \quad y' = f(t, y) \\
 & \quad \vdots \\
 y'_n & = f_n(t, y_1, ..., y_n)
\end{align*} \]

An Initial Value Problem needs \(n \) initial conditions

\[\begin{align*}
 y_1(t_0) & = K_1, y_2(t_0) = K_2, ..., y_n(t_0) = K_n \Rightarrow y(t_0) = K
\end{align*} \]

Existence and uniqueness

Let \(f_1, f_2, ..., f_n \) be continuous functions with continuous partial derivatives \(\frac{\partial f_1}{\partial y_1}, \frac{\partial f_1}{\partial y_2}, \ldots, \frac{\partial f_n}{\partial y_n} \) in some domain \(R \) of the \(ty_1y_2...y_n \)-space containing the point \((t_0, K_1, ..., K_n) \). Then the ODE system has a solution on some interval \(t_0 - \alpha < t < t_0 + \alpha \) satisfying the initial conditions, and this solution is unique.
Basic theory

Linear systems

\[y'_1 = a_{11}(t)y_1 + a_{12}(t)y_2 + \ldots + a_{1n}(t)y_n + g_1(t) \]
\[y'_2 = a_{21}(t)y_1 + a_{22}(t)y_2 + \ldots + a_{2n}(t)y_n + g_2(t) \]
\[\ldots \]
\[y'_n = a_{n1}(t)y_1 + a_{n2}(t)y_2 + \ldots + a_{nn}(t)y_n + g_n(t) \]

\[\Rightarrow y' = Ay + g \]

with

\[A = \begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{pmatrix} \]

If \(g = 0 \), the system is homogeneous.

Existence and uniqueness

Let the \(a_{ij} \)'s and \(g_i \)'s functions be continuous functions of \(t \) in an open interval \(I \) containing \(t_0 \), then there exists a solution satisfying the initial conditions, and this solution is unique.
Basic theory

Superposition principle

The linear combination of any two solutions, \(y_1 \) and \(y_2 \), of the H problem is also a solution of the H problem.

Proof:

\[
\begin{align*}
y &= c_1 y_1 + c_2 y_2 \\
y' &= c_1 y_1' + c_2 y_2' \\
&= c_1 (Ay_1) + c_2 (Ay_2) \\
&= A(c_1 y_1 + c_2 y_2) \\
&= Ay
\end{align*}
\]
General solution. Wronskian

If the a_{ij}'s functions are continuous, then the general solution of the H problem can be written as

$$y = c_1y_1 + c_2y_2 + ... + c_ny_n$$

where $y_1, y_2, ..., y_n$ constitute a basis or fundamental system of solutions, and there is no singular solution. We can write the n basis functions as the columns of a matrix Y

$$Y = (y_1 \ y_2 \ ... \ y_n)$$

and write the general solution as

$$y = Yc$$

The Wronskian is the determinant of Y

$$W = |Y|$$
Outline

1 Systems of ODEs. Phase plane. Qualitative methods
 - Systems of ODEs as models
 - Basic theory of systems of ODEs. Wronskian
 - **Constant-coefficient systems. Phase plane method**
 - Criteria for critical points. Stability
 - Qualitative methods for nonlinear systems
 - Nonhomogeneous linear systems of ODEs
Constant coefficients systems

We try a function of the form

\[y = xe^{\lambda t} \]

\[y' = \lambda xe^{\lambda t} \]

And substitute it in the ODE

\[\lambda xe^{\lambda t} = Axe^{\lambda t} \]

\[\lambda x = Ax \]

That is \(y \) is a solution if \(x \) is an eigenvector of \(A \). If \(A \) has \(n \) distinct eigenvalues, then the general solution is

\[y = c_1 x_1 e^{\lambda_1 t} + ... + c_n x_n e^{\lambda_n t} \]
Constant coefficients systems

The Wronskian of the basis of solutions is

\[W = \begin{vmatrix} x_1 e^{\lambda_1 t} & \cdots & x_n e^{\lambda_n t} \\ e^{\lambda_1 t + \cdots + \lambda_n t} & x_1 & \cdots & x_n \end{vmatrix} \]

The exponential term cannot be 0, and the determinant of the matrix of eigenvectors cannot be 0 because they are linearly independent vectors since they correspond to distinct eigenvalues. This proves that there is no singular solution if all eigenvalues are distinct.
Phase-plane trajectories

Example

\[y' = \begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix} y \]

Solution:

\[A \Rightarrow \begin{cases}
\lambda_1 = -2, x_1 = (1, 1)^T \\
\lambda_2 = -4, x_2 = (1, -1)^T
\end{cases} \]

\[y = c_1 x_1 e^{\lambda_1 t} + c_2 x_2 e^{\lambda_2 t} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-4t} \]
Phase-plane trajectories

Example (continued)

\[y = c_1 x_1 e^{\lambda_1 t} + c_2 x_2 e^{\lambda_2 t} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-4t} \]
Phase-plane trajectories

Critical points

A critical point is a point at which $y' = 0$, they are also called equilibrium solutions. Let us analyze the system

$$y' = Ay$$

and the slope of trajectories in the phase plane at a given point (y_1, y_2)

$$\frac{dy_2}{dy_1} = \frac{y'_2}{y'_1} dt = \frac{y'_2}{y'_1}$$

At critical points, this ratio becomes undefined ($\frac{0}{0}$). There are five types of critical points: improper nodes, proper nodes, saddle points, centers, and spiral points.
An improper node is a critical point at which all trajectories, except two of them, have the same limiting direction of the tangent. The two exceptional directions also have a limiting direction of the tangent which, however, is different.
Phase-plane trajectories

Example: Proper node

\[y' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} y \Rightarrow y = c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^t + c_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^t \]

A proper node is a critical point at which every trajectory has a definite limiting direction and for any given direction \(d \), there is a trajectory having \(d \) as its limiting direction.
Example: Saddle point

\[y' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} y \Rightarrow y = c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^t + c_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t} \]

A saddle point is a critical point at which there are two incoming trajectories, two outgoing trajectories, and all the other trajectories in a neighborhood of the critical point bypass it.
Example: Center

\[y' = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} y \Rightarrow y = c_1 \begin{pmatrix} 1 \\ 2i \end{pmatrix} e^{2it} + c_2 \begin{pmatrix} 1 \\ -2i \end{pmatrix} e^{-2it} \]

A **center** is a critical point that is enclosed by infinitely many closed trajectories.
Phase-plane trajectories

Example: Spiral point

\[\begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} y \Rightarrow y = c_1 \begin{pmatrix} 1 \\ i \end{pmatrix} e^{(-1+i)t} + c_2 \begin{pmatrix} 1 \\ -i \end{pmatrix} e^{(-1-i)t} \]

A spiral point is a critical point about which trajectories spiral, approaching the critical point or going away from it, as \(t \to \infty \).
Phase-plane trajectories

Example: Degenerate node

\[y' = \begin{pmatrix} 4 & 1 \\ -1 & 2 \end{pmatrix} y \]

The problem is that \(A \) is not diagonalizable because it has a double eigenvalue at \(\lambda = 3 \) but only one associated eigenvector \(x_1 = (1, -1)^T \). One of the solutions is of the form:

\[y_1 = x_1 e^{\lambda_1 t} \]

For the second solution we look for solution of the type

\[y_2 = tx_1 e^{\lambda_1 t} + ue^{\lambda_1 t} \]

with a constant \(u \) vector.

\[y_2' = x_1 e^{\lambda_1 t} + t\lambda_1 x_1 e^{\lambda_1 t} + \lambda_1 ue^{\lambda_1 t} \]
Example: Degenerate node (continued)

We now substitute in the ODE

\[y'_2 = Ay_2 \]

\[x_1 e^{\lambda_1 t} + t\lambda_1 x_1 e^{\lambda_1 t} + \lambda_1 u e^{\lambda_1 t} = tAx_1 e^{\lambda_1 t} + Aue^{\lambda t} \]

\[x_1 e^{\lambda_1 t} + t\lambda_1 x_1 e^{\lambda_1 t} + \lambda_1 u e^{\lambda_1 t} = t\lambda_1 x_1 e^{\lambda_1 t} + Aue^{\lambda_1 t} \]

\[x_1 e^{\lambda_1 t} + \lambda_1 u e^{\lambda_1 t} = Aue^{\lambda_1 t} \]

\[x_1 + \lambda_1 u = Au \]

\[(A - \lambda_1 I)u = x_1 \Rightarrow u = (0, 1)^T \]

So the general solution is

\[y = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3t} + c_2 \left(t \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{3t} \right) \]
Phase-plane trajectories

Example: Degenerate node (continued)

\[y = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3t} + c_2 \left(t \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{3t} \right) \]
Degenerate solutions

When the matrix A is not diagonalizable, then we may complete the fundamental system with solutions of the form

$$y_2 = (tx_1 + v_1) e^{\lambda_1 t}$$

$$y_3 = \left(\frac{1}{2} t^2 x_1 + tv_1 + v_2 \right) e^{\lambda_1 t}$$

$$y_4 = \left(\frac{1}{3} t^3 x_1 + \frac{1}{2} t^2 v_1 + tv_2 + v_3 \right) e^{\lambda_1 t}$$

...
System ODEs

\[
y' = \begin{pmatrix} y_2 \\ -\sin(y_1) \end{pmatrix}
\]

MATLAB

```matlab
f = @(t,y) [y(2);-sin(y(1))]
vectfield(f,-2:.5:8,-2.5:.25:2.5)
hold on
for y20=0:0.3:2.7
    [ts,ys] = ode45(f,[0,10],[0;y20]);
    plot(ys(:,1),ys(:,2))
end
hold off
```
Exercises

From Kreyszig (10th ed.), Chapter 4, Section 3:

- 4.3.6
- 4.3.7
- 4.3.18
1 Systems of ODEs. Phase plane. Qualitative methods
- Systems of ODEs as models
- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems
- Nonhomogeneous linear systems of ODEs
Criteria for critical points

Critical point classification

\[y' = Ay = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} y \]

Let’s analyze the characteristic polynomial and eigenvalues of \(A \)

\[\det\{A - \lambda I\} = \lambda^2 - \text{Tr}\{A\} \lambda + \det\{A\} = 0 \]

Let us define

\[\Delta = (\text{Tr}\{A\} - 4(\det\{A\})^2) \]

The eigenvalues are

\[\lambda_{1,2} = \frac{\text{Tr}\{A\} \pm \sqrt{\Delta}}{2} \]
Criteria for critical points

Critical point classification (continued)

\[\lambda_{1,2} = \frac{\text{Tr}\{A\} \pm \sqrt{\Delta}}{2} \]

<table>
<thead>
<tr>
<th>Type</th>
<th>Tr{A} = \lambda_1 + \lambda_2</th>
<th>det{A} = \lambda_1 \lambda_2</th>
<th>\Delta = (\lambda_1 - \lambda_2)^2</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>> 0</td>
<td>≥ 0</td>
<td>Real, same sign</td>
<td></td>
</tr>
<tr>
<td>Saddle point</td>
<td>< 0</td>
<td></td>
<td>Real, opposite signs</td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>= 0</td>
<td>< 0</td>
<td>Pure imaginary</td>
<td></td>
</tr>
<tr>
<td>Spiral point</td>
<td>\neq 0</td>
<td>< 0</td>
<td>Complex</td>
<td></td>
</tr>
</tbody>
</table>
Criteria for critical points

Stable critical point

A critical point P_0 is **stable** if all trajectories of the ODE that at some instant are close to P_0 remain close to P_0 at all future times; precisely: if for every disk D_ϵ of radius ϵ with center P_0 there is a disk D_δ of radius δ with center P_0 such that every trajectory of the ODE that has a point P_1 (corresponding to $t = t_1$, say) in D_δ has all its points corresponding to $t \geq t_1$ in D_ϵ. If a critical point is not stable, it is **unstable**.

![Diagram of stable critical point](image)

Fig. 90. Stable critical point P_0 of (1) (The trajectory initiating at P_1 stays in the disk of radius ϵ.)
Asymptotically stable critical point

A critical point P_0 is **asymptotically stable** (stable and attractive) if P_0 is stable and every trajectory that has a point in $D_δ$ approaches P_0 as $t \to \infty$.

Fig. 91. Stable and attractive critical point P_0 of (1)
Criteria for critical points

Critical point classification (continued)

\[\det\{A - \lambda I\} = \lambda^2 - \text{Tr}\{A\} \lambda + \det\{A\} = \lambda^2 - p\lambda + q = 0 \]

\[\lambda_{1,2} = \frac{\text{Tr}\{A\} \pm \sqrt{\Delta}}{2} \]

<table>
<thead>
<tr>
<th>Type</th>
<th>(p = \text{Tr}{A} = \frac{\lambda_1 + \lambda_2}{2})</th>
<th>(q = \det{A} = \lambda_1 \lambda_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotically stable</td>
<td>(< 0)</td>
<td>(0)</td>
</tr>
<tr>
<td>Stable</td>
<td>(\leq 0)</td>
<td>(> 0)</td>
</tr>
<tr>
<td>Unstable</td>
<td>(> 0)</td>
<td>or (< 0)</td>
</tr>
</tbody>
</table>
Criteria for critical points

Critical point classification (continued)

Fig. 92. Stability chart of the system (1) with p, q, Δ defined in (5). Stable and attractive: The second quadrant without the q-axis. Stability also on the positive q-axis (which corresponds to centers). Unstable: Dark blue region
Criteria for critical points

Critical point classification (continued)

<table>
<thead>
<tr>
<th>eigenvalues</th>
<th>linear system</th>
<th>nonlinear system</th>
</tr>
</thead>
<tbody>
<tr>
<td>real</td>
<td></td>
<td></td>
</tr>
<tr>
<td>both pos.</td>
<td>equal</td>
<td>proper or improper node</td>
</tr>
<tr>
<td></td>
<td>different</td>
<td>node</td>
</tr>
<tr>
<td>both neg.</td>
<td>equal</td>
<td>proper or improper node</td>
</tr>
<tr>
<td></td>
<td>different</td>
<td>node</td>
</tr>
<tr>
<td>pos. and neg.</td>
<td></td>
<td>saddle point</td>
</tr>
<tr>
<td>complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>not real</td>
<td>real part pos.</td>
<td>spiral point</td>
</tr>
<tr>
<td></td>
<td>real part neg.</td>
<td>spiral point</td>
</tr>
<tr>
<td></td>
<td>real part zero</td>
<td>center</td>
</tr>
</tbody>
</table>
Criteria for critical points

Example

\[my'' + cy' + ky = 0 \]

Solution:

\[y'' = -\frac{k}{m}y - \frac{c}{m}y' \]

We convert it to a system ODE with

\[y_1 = y, y_1' = y_2 \]

\[y' = \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{pmatrix} y \]

\[\det(A - \lambda I) = \lambda^2 + \frac{c}{m}\lambda + \frac{k}{m} \]

From where

\[p = -\frac{c}{m}, q = \frac{k}{m}, \Delta = \left(\frac{c}{m} \right)^2 - 4\frac{k}{m} \]
Criteria for critical points

Example (continued)

\[p = -\frac{c}{m}, \quad q = \frac{k}{m}, \quad \Delta = \left(\frac{c}{m} \right)^2 - 4 \frac{k}{m} \]

No damping. \(c = 0, \ p = 0, \ q > 0, \) a center.

Underdamping. \(c^2 < 4mk, \ p < 0, \ q > 0, \ \Delta < 0, \) a stable and attractive spiral point.

Critical damping. \(c^2 = 4mk, \ p < 0, \ q > 0, \ \Delta = 0, \) a stable and attractive node.

Overdamping. \(c^2 > 4mk, \ p < 0, \ q > 0, \ \Delta > 0, \) a stable and attractive node.
Exercises

From Kreyszig (10th ed.), Chapter 4, Section 4:

- 4.4.3
- 4.4.14
- 4.4.17
Systems of ODEs. Phase plane. Qualitative methods

- Systems of ODEs as models
- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems
- Nonhomogeneous linear systems of ODEs
Autonomous nonlinear systems

Qualitative methods allow analyzing a system without actually solving it. For autonomous nonlinear systems

\[y' = f(y) \]

with a critical point \(y_0 \) we may shift the origin so that the \(y_0 \) is centered

\[\tilde{y} = y - y_0 \]

\[\tilde{y}' = f(\tilde{y} + y_0) \]

\[\tilde{y}' = \tilde{f}(\tilde{y}) \]

and study the local behaviour of the system ODE around \(0 \) as we have already done. For doing so, we may need to linearize the ODE.
Autonomous nonlinear systems

Linearization of autonomous nonlinear systems

\[\dot{\tilde{y}}' = \tilde{f}(\tilde{y}) \approx A\tilde{y} \]

where \(A \) is the Jacobian of the function \(f \) evaluated at the origin \(0 \):

\[
A = \begin{vmatrix}
\frac{\partial \tilde{f}_1}{\partial \tilde{y}_1} & \frac{\partial \tilde{f}_1}{\partial \tilde{y}_2} & \cdots & \frac{\partial \tilde{f}_1}{\partial \tilde{y}_n} \\
\frac{\partial \tilde{f}_2}{\partial \tilde{y}_1} & \frac{\partial \tilde{f}_2}{\partial \tilde{y}_2} & \cdots & \frac{\partial \tilde{f}_2}{\partial \tilde{y}_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \tilde{f}_n}{\partial \tilde{y}_1} & \frac{\partial \tilde{f}_n}{\partial \tilde{y}_2} & \cdots & \frac{\partial \tilde{f}_n}{\partial \tilde{y}_n}
\end{vmatrix}_{\tilde{y}=0}
\]

Theorem

If \(\tilde{f} \) has continuous components and continuous partial derivatives in a neighbourhood of the critical point \(0 \) and \(\text{det}\{A\} \neq 0 \), then the kind and stability of the critical point of the nonlinear system ODE is the same as those of the linearized system. Exceptions occur if \(A \) has equal or pure imaginary eigenvalues, then the nonlinear problem may have the same kind of critical point as the linearized system or a spiral point.
Autonomous nonlinear systems

Example: Free undamped pendulum

Gravity compensates the acceleration of the bob

\[mL\ddot{\theta} + mg \sin(\theta) = 0 \]

\[\ddot{\theta} + k \sin(\theta) = 0 \quad k = \frac{g}{L} \]

To find the critical points we convert the equation into a system ODE

\[y_1 = \theta \]

\[y_2 = y_1' \]

\[y_2' + k \sin(y_1) = 0 \]

Equivalently

\[\mathbf{y}' = \begin{pmatrix} y_2 \\ -k \sin(y_1) \end{pmatrix} \]
Example (continued)

\[\mathbf{y}' = \begin{pmatrix} y_2 \\ -k \sin(y_1) \end{pmatrix} \]

The critical points are at \(\mathbf{y} = (\pi n, 0)^T \ (n \in \mathbb{Z}) \). Let’s analyze the one at \((0, 0)\).
Let’s calculate the Jacobian of \(\mathbf{f} \) at \((0, 0)\)

\[
\begin{pmatrix}
\frac{\partial f_1}{\partial y_1} & \frac{\partial f_1}{\partial y_2} \\
\frac{\partial f_2}{\partial y_1} & \frac{\partial f_2}{\partial y_2}
\end{pmatrix}
\bigg|_{y=0}
= \begin{pmatrix} 0 & 1 \\ -k \cos(y_1) & 0 \end{pmatrix}
\bigg|_{y=0}
= \begin{pmatrix} 0 & 1 \\ -k & 0 \end{pmatrix}
\]

To classify this critical point we note that

\[
\text{Tr}\{A\} = 0 \quad \text{det}\{A\} = k > 0
\]

So we conclude that \(\mathbf{y} = \mathbf{0} \) is a center (always stable). The same happens to all points \((0, 2\pi n)\) since the sin function is periodic with period \(2\pi\).
Example (continued)

\[\begin{align*}
\mathbf{y}' &= \begin{pmatrix} y_2 \\ -k \sin(y_1) \end{pmatrix}
\end{align*} \]

Let’s analyze the critical point at \((\pi, 0)\). We center the critical point by doing

\[\tilde{\mathbf{y}} = \mathbf{y} - \begin{pmatrix} \pi \\ 0 \end{pmatrix} \]

The system ODE becomes

\[\begin{align*}
\tilde{\mathbf{y}}' &= \begin{pmatrix} \tilde{y}_2 \\ -k \sin(\tilde{y}_1 + \pi) \end{pmatrix}
\end{align*} \]

Let’s calculate the Jacobian of \(\tilde{\mathbf{f}}\) at \((0, 0)\)

\[A = \begin{pmatrix} \frac{\partial \tilde{f}_1}{\partial \tilde{y}_1} & \frac{\partial \tilde{f}_1}{\partial \tilde{y}_2} \\ \frac{\partial \tilde{f}_2}{\partial \tilde{y}_1} & \frac{\partial \tilde{f}_2}{\partial \tilde{y}_2} \end{pmatrix} \bigg|_{\tilde{y}=0} = \begin{pmatrix} 0 & 1 \\ -k \cos(\tilde{y}_1 + \pi) & 0 \end{pmatrix} \bigg|_{y=0} = \begin{pmatrix} 0 & 1 \\ k & 0 \end{pmatrix} \]
To classify this critical point we note that

$$\text{Tr}\{A\} = 0 \quad \text{det}\{A\} = -k < 0$$

So we conclude that $y = (\pi, 0)^T$ is a saddle point (unstable). The same happens to all points $(0, \pi + 2\pi n)$ since the sin function is periodic with period 2π.

(b) Solution curves $y_2(y_1)$ of (4) in the phase plane.

Example 1 (C will be explained in Example 4.)
Autonomous nonlinear systems

Example: Damped pendulum

\[\theta'' + c\theta' + k \sin(\theta) = 0 \]

To find the critical points we convert the equation into a system ODE

\[
\begin{align*}
y_1 &= \theta \\
y_2 &= y_1' \\
y_2' &= y_1 - k \sin(y_1) - cy_2
\end{align*}
\]

Equivalently

\[
y' = \begin{pmatrix} y_2 \\ -k \sin(y_1) - cy_2 \end{pmatrix}
\]
Example (continued)

\[
y' = \left(\begin{array}{c} y_2 \\ -k \sin(y_1) - cy_2 \end{array} \right)
\]

Critical points are at the same location as in the free undamped pendulum \(y = (\pi n, 0) \). Let’s study the critical point at \((0, 0)\).

\[
A = \left(\begin{array}{cc} \frac{\partial f_1}{\partial y_1} & \frac{\partial f_1}{\partial y_2} \\ \frac{\partial f_2}{\partial y_1} & \frac{\partial f_2}{\partial y_2} \end{array} \right) \bigg|_{y=0} = \left(\begin{array}{cc} 0 & 1 \\ -k \cos(y_1) & -c \end{array} \right) \bigg|_{y=0} = \left(\begin{array}{cc} 0 & 1 \\ -k & -c \end{array} \right)
\]

\[
\text{Tr}\{A\} = -c < 0 \quad \text{det}\{A\} = k > 0 \quad \Delta = -c + 4k^2
\]

If \(\Delta < 0 \), then we have a stable and attractive spiral point. If \(\Delta > 0 \), then it is a stable and attractive node.
Example (continued)

\[\mathbf{y}' = \begin{pmatrix} y_2 \\ -k \sin(y_1) - cy_2 \end{pmatrix} \]

Let's analyze the critical point at \((\pi, 0)\). We center the critical point by doing

\[\tilde{\mathbf{y}} = \mathbf{y} - \begin{pmatrix} \pi \\ 0 \end{pmatrix} \]

The system ODE becomes

\[\tilde{\mathbf{y}}' = \begin{pmatrix} \tilde{y}_2 \\ -k \sin(\tilde{y}_1 + \pi) - cy_2 \end{pmatrix} \]

Let's calculate the Jacobian of \(\tilde{\mathbf{f}}\) at \((0, 0)\)

\[
A = \begin{pmatrix}
\frac{\partial \tilde{f}_1}{\partial \tilde{y}_1} & \frac{\partial \tilde{f}_1}{\partial \tilde{y}_2} \\
\frac{\partial \tilde{f}_2}{\partial \tilde{y}_1} & \frac{\partial \tilde{f}_2}{\partial \tilde{y}_2}
\end{pmatrix}_{\tilde{y} = 0}
= \begin{pmatrix} 0 & 1 \\
-k \cos(\tilde{y}_1 + \pi) & -c \end{pmatrix}_{y = 0}
= \begin{pmatrix} 0 & 1 \\
k & -c \end{pmatrix}
\]
To classify this critical point we note that

\[\text{Tr}\{A\} = -c \quad \text{det}\{A\} = -k < 0 \]

So we conclude that \(y = (\pi, 0)^T \) is a saddle point (unstable). The same happens to all points \((0, \pi + 2\pi n) \) since the sin function is periodic with period \(2\pi \).
Example: Lotka-Volterra population model

1. Rabbits have unlimited food supply. Hence, if there were no foxes, their number $y_1(t)$ would grow exponentially, $y_1' = ay_1$.

2. Actually, y_1 is decreased because of the kill by foxes, say, at a rate proportional to y_1y_2, where $y_2(t)$ is the number of foxes. Hence $y_1' = ay_1 - by_1y_2$, where $a > 0$ and $b > 0$.

3. If there were no rabbits, then $y_2(t)$ would exponentially decrease to zero, $y_2' = -ly_2$. However, y_2 is increased by a rate proportional to the number of encounters between predator and prey; together we have $y_2' = -ly_2 + ky_1y_2$, where $k > 0$ and $l > 0$.

Solution:

$$y_1' = ay_1 - by_1y_2$$

$$y_2' = ky_1y_2 - ly_2$$
Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)

Critical points are the solutions of:

\[0 = y_1' = y_1(a - by_2) \]
\[0 = y_2' = (ky_1 - l)y_2 \]

That is \((0, 0)\) or \((\frac{l}{k} \frac{a}{b})\). Let’s analyze \((0, 0)\)

\[
A = \left. \begin{pmatrix} \frac{\partial f_1}{\partial y_1} & \frac{\partial f_1}{\partial y_2} \\ \frac{\partial f_2}{\partial y_1} & \frac{\partial f_2}{\partial y_2} \end{pmatrix} \right|_{y=0} = \left. \begin{pmatrix} a & -by_1 \\ ky_2 & -l \end{pmatrix} \right|_{y=0} = \begin{pmatrix} a & 0 \\ 0 & -l \end{pmatrix}
\]

Eigenvalues are \(\lambda_1 = a, \lambda_2 = -l\). They have different signs, so we have a saddle point.
Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)

For the critical point \(\left(\frac{l}{k}, \frac{a}{b} \right) \) we make the change of variables

\[
\tilde{y} = y - \left(\frac{l}{k} \frac{a}{b} \right)
\]

The system ODE becomes

\[
\tilde{y}' = \left(\tilde{y}_1 + \frac{l}{k} \right) \left(a - b \left(\tilde{y}_2 + \frac{a}{b} \right) \right) = \left(\tilde{y}_1 + \frac{l}{k} \right) \left(-b \tilde{y}_2 \right)
\]

Let’s calculate the Jacobian of \(\tilde{f} \) at \((0, 0)\)

\[
A = \left| \begin{array}{ll}
\frac{\partial \tilde{f}_1}{\partial \tilde{y}_1} & \frac{\partial \tilde{f}_1}{\partial \tilde{y}_2} \\
\frac{\partial \tilde{f}_2}{\partial \tilde{y}_1} & \frac{\partial \tilde{f}_2}{\partial \tilde{y}_2}
\end{array} \right|_{\tilde{y}=0} = \left| \begin{array}{ll}
-b\tilde{y}_2 & \left(\tilde{y}_1 + \frac{l}{k} \right) b \\
-\frac{k}{k} \tilde{y}_2 + \frac{a}{b} & k\tilde{y}_1
\end{array} \right|_{y=0} = \left(\begin{array}{cc}
0 & -\frac{l}{k} b \\
k\frac{a}{b} & 0
\end{array} \right)
\]
Example: Lotka-Volterra population model (continued)

\[A = \begin{pmatrix} 0 & -\frac{I}{k}b \\ \frac{a}{b} & 0 \end{pmatrix} \]

We observe that

\[\text{Tr}\{A\} = 0 \quad \text{det}\{A\} = al > 0 \]

So the critical point is a stable center. Let’s solve the equation around this critical point

\[y_1' = -\frac{I}{k}b\tilde{y}_2 \]
\[y_2' = k\frac{a}{b}\tilde{y}_1 \]

We rewrite the equation system as

\[y_1' = -\frac{I}{k}b\tilde{y}_2 \]
\[k\frac{a}{b}\tilde{y}_1 = y_2' \]
Example: Lotka-Volterra population model (continued)

\[y_1' = -\frac{l}{k} b \tilde{y}_2 \]
\[k \frac{a}{b} \tilde{y}_1 = y_2' \]

and multiply both equations

\[k \frac{a}{b} \tilde{y}_1 y'_1 = -\frac{l}{k} b \tilde{y}_2 y'_2 \]

Integrating

\[k \frac{a}{2b} \tilde{y}_1^2 = -\frac{l}{2k} b \tilde{y}_2^2 + C \]
\[\frac{ak}{b} \tilde{y}_1^2 + \frac{bl}{k} \tilde{y}_2^2 = C \]
Example: Lotka-Volterra population model (continued)

\[
\frac{ak}{b} \ddot{y}_1 + \frac{bl}{k} \ddot{y}_2 = C \Rightarrow \frac{ak}{b} \left(y_1 - \frac{l}{k} \right)^2 + \frac{bl}{k} \left(y_2 - \frac{a}{b} \right)^2 = C
\]
Transformation to a first-order equation in the phase plane

Consider a second-order autonomous ODE

\[F(y, y', y'') \]

We make the change of variables

\[y_1 = y \]
\[y_2 = y'_1 \]

And find \(y'' \) using the chain rule

\[y'' = y'_2 = \frac{dy_2}{dt} = \frac{dy_2}{dy_1} \frac{dy_1}{dt} = \frac{dy_2}{dy_1} y_2 \]

The ODE becomes

\[F \left(y_1, y_2, \frac{dy_2}{dy_1} y_2 \right) = 0 \]
Example: Free undamped pendulum

\[\theta'' + k \sin(\theta) = 0 \]

Making the substitutions suggested by the method we get

\[\frac{dy_2}{dy_1} y_2 + k \sin(y_1) = 0 \]
\[y_2 dy_2 = -k \sin(y_1) dy_1 \]
\[\frac{1}{2} y_2^2 = k \cos(y_1) + C \]
Exercises

From Kreyszig (10th ed.), Chapter 4, Section 5:

- 4.5.5
Systems of ODEs. Phase plane. Qualitative methods

- Systems of ODEs as models
- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems

- Nonhomogeneous linear systems of ODEs
Nonhomogeneous linear systems of ODEs

\[y' = A(t)y + g(t) \]

If the entries of the \(A \) matrix and \(g \) vector are continuous, then the general solution can be expressed as

\[y = y_h + y_p \]

Method of undetermined coefficients

Valid for constant matrix \(A \) and \(g \) that is a sum of constant, powers, exponentials or sine/cosine functions.
Method of undetermined coefficients

Example

\[y' = \begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix} y + \begin{pmatrix} -6 \\ 2 \end{pmatrix} e^{-2t} \]

Solution:
The general solution of the H problem is

\[y_h = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-4t} \]

Since the excitation signal \(e^{-2t} \) is also a solution of the H problem we try a particular solution of the form

\[y_p = (tu + v)e^{-2t} \]

\[y'_p = (-2tu + u - 2v)e^{-2t} \]
Example (continued)

Substituting in the ODE

\[(-2t\mathbf{u} + \mathbf{u} - 2\mathbf{v})e^{-2t} = A(t\mathbf{u} + \mathbf{v})e^{-2t} + \begin{pmatrix} -6 \\ 2 \end{pmatrix} e^{-2t} \]

\[-2t\mathbf{u} + \mathbf{u} - 2\mathbf{v} = tA\mathbf{u} + A\mathbf{v} + \begin{pmatrix} -6 \\ 2 \end{pmatrix} \]

Identifying the coefficients of \(t \)

\[-2\mathbf{u} = A\mathbf{u} \]

That is \(\mathbf{u} \) is an eigenvector of \(A \) associated to \(\lambda = -2 \)

\[\mathbf{u} = a(1, 1)^T \]
Method of undetermined coefficients

Example (continued)

\[-2tu + u - 2v = tAu + Av + \begin{pmatrix} -6 \\ 2 \end{pmatrix}\]

Identifying the coefficients without \(t \)

\[u - 2v = Av + \begin{pmatrix} -6 \\ 2 \end{pmatrix}\]

\[(A + 2I)v = u - \begin{pmatrix} -6 \\ 2 \end{pmatrix}\]

We cannot solve as \((A + 2I)^{-1}(\ldots)\) because -2 is an eigenvalue of \(A \) and \(A + 2I \) is not invertible. Then

\[
\begin{pmatrix}
-3 & 1 \\
1 & -3
\end{pmatrix}
+
\begin{pmatrix}
2 & 0 \\
0 & 2
\end{pmatrix}
\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}
=
\begin{pmatrix} a \\ a \end{pmatrix}
-
\begin{pmatrix} -6 \\ 2 \end{pmatrix}
\]
Method of undetermined coefficients

Example (continued)

\[
\left(\begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} a \\ a \end{pmatrix} - \begin{pmatrix} -6 \\ 2 \end{pmatrix}
\]

\[
\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} a + 6 \\ a - 2 \end{pmatrix}
\]

\[
\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} a + 6 \\ 2a + 4 \end{pmatrix}
\]

For this system being compatible we need

\[2a + 4 = 0 \Rightarrow a = -2\]

Then

\[v_2 = v_1 + (-2 + 6) = v_1 + 4\]

We may simply take \(v_1 = 0 \)

\[v = \begin{pmatrix} 0 \\ 4 \end{pmatrix}\]
Finally

\[\mathbf{y}_p = (t \begin{pmatrix} -2 \\ -2 \end{pmatrix} + \begin{pmatrix} 0 \\ 4 \end{pmatrix}) e^{-2t} \]

\[\mathbf{y} = \mathbf{y}_h + \mathbf{y}_p = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-4t} + \left(t \begin{pmatrix} -2 \\ -2 \end{pmatrix} + \begin{pmatrix} 0 \\ 4 \end{pmatrix} \right) e^{-2t} \]

\[\mathbf{y} = \begin{pmatrix} c_1 - 2t \\ c_1 - 2t + 4 \end{pmatrix} e^{-2t} + \begin{pmatrix} c_2 \\ -c_2 \end{pmatrix} e^{-4t} \]
This is valid for non-constant A and arbitrary g

$$y' = A(t)y + g(t)$$

If the general solution of the H problem is of the form

$$y_h = (y_1 \quad y_2 \quad \ldots \quad y_n) c = Y(t)c$$

Then we look for a solution of the form

$$y_p = Y(t)u(t)$$

$$y'_p = Y'u + Yu'$$

And substitute in the ODE

$$Y'u + Yu' = AYu + g$$
Method of variation of parameters

\[Y'u + Y'u' = AYu + g \]

Since the columns of \(Y \) are solutions of the H problem we have

\[Y' = AY \]

Then

\[AYu + Y'u' = AYu + g \]

\[Y'u' = g \]

\[u' = Y^{-1}g \]
Method of variation of parameters

Example (same as for undetermined coefficients)

\[y' = \begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix} y + \begin{pmatrix} -6 \\ 2 \end{pmatrix} e^{-2t} \]

Solution:
The general solution of the H problem is

\[y_h = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-4t} = \begin{pmatrix} e^{-2t} & e^{-4t} \\ e^{-2t} & -e^{-4t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = Y c \]

\[Y^{-1} = \frac{1}{-2e^{-6t}} \begin{pmatrix} -e^{-4t} & -e^{-4t} \\ -e^{-2t} & e^{-2t} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} e^{2t} & e^{2t} \\ e^{4t} & -e^{4t} \end{pmatrix} \]

\[u' = Y^{-1} g = \frac{1}{2} \begin{pmatrix} e^{2t} & e^{2t} \\ e^{4t} & -e^{4t} \end{pmatrix} \begin{pmatrix} -6e^{-2t} \\ 2e^{-2t} \end{pmatrix} = \begin{pmatrix} -2 \\ -4e^{2t} \end{pmatrix} \]

\[u = \int \begin{pmatrix} -2 \\ -4e^{2t} \end{pmatrix} dt = \begin{pmatrix} -2t \\ -2e^{2t} \end{pmatrix} \]
Method of variation of parameters

Example

\[y_p = Y u = \begin{pmatrix} e^{-2t} & e^{-4t} \\ e^{-2t} & -e^{-4t} \end{pmatrix} \begin{pmatrix} -2t \\ -2e^{2t} \end{pmatrix} = \begin{pmatrix} -2 - 2t \\ 2 - 2t \end{pmatrix} e^{-2t} \]

\[y = y_h + y_p = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-4t} + \begin{pmatrix} -2 - 2t \\ 2 - 2t \end{pmatrix} e^{-2t} \]

\[y = \begin{pmatrix} c_1 - 2 - 2t \\ c_1 + 2 - 2t \end{pmatrix} e^{-2t} + \begin{pmatrix} c_2 \\ -c_2 \end{pmatrix} e^{-4t} \]

We may compare to the previous solution

\[y = \begin{pmatrix} c_1 - 2t \\ c_1 - 2t + 4 \end{pmatrix} e^{-2t} + \begin{pmatrix} c_2 \\ -c_2 \end{pmatrix} e^{-4t} \]
Exercises

From Kreyszig (10th ed.), Chapter 4, Section 6:

- 4.6.5
Outline

1. Systems of ODEs. Phase plane. Qualitative methods
 - Systems of ODEs as models
 - Basic theory of systems of ODEs. Wronskian
 - Constant-coefficient systems. Phase plane method
 - Criteria for critical points. Stability
 - Qualitative methods for nonlinear systems
 - Nonhomogeneous linear systems of ODEs